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For quantum problems on the pseudosphere generated by arithmetic groups there exist special trace
formulas, called trace formulas for Hecke operators, which permit the reconstruction of wave functions
from the knowledge of periodic orbits. After a short discussion of this subject we present the Hecke
operators’ trace formulas for the Dirichlet problem on the modular billiard, which is a prototype of ar-
ithmetical systems. The results of numerical computations for these semiclassical-type relations are in
good agreement with the directly computed eigenfunctions.

PACS number(s): 05.45.+b, 02.20. —a, 03.65.—w

The problem of semiclassical quantization of ergodic
systems has attracted wide attention in the last few years
(see, e.g., [1,2] and references therein). The main tool
here is the trace formula [3], which gives a connection be-
tween the density of quantum energy levels and a sum
over all classical periodic trajectories of the system.

In general, this relation is valid only in the limit of the
Planck constant tending to zero. The only exception,
where such formulas are exact, is the problem of finding
the spectrum of the Laplace-Beltrami operator on sur-
faces of constant negative curvature generated by discrete
groups (see, e.g., [15,4]). In these cases there exists the
famous Selberg trace formula [5,6], giving an exact rela-
tionship between the quantum spectrum and classical
periodic orbits. The numerical computations for different
models [7-11] have confirmed that such formulas are not
merely of a purely theoretical interest.

The purpose of this Rapid Communication is to em-
phasize that for specific subclasses of models on constant
negative curvature surfaces, namely, for ones generated
by arithmetic groups, there exists another type of trace
formula; it permits one (in principle) to obtain not only
the energy eigenvalues but also the corresponding eigen-
functions directly from periodic orbits. Though in gen-
eral one can build a semiclassical expression for wave
functions through periodic orbits [12], the formula dis-
cussed below is of quite a different origin and seems to be
not easily generalized for other systems. Nevertheless, it
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is important for semiclassical computations to investigate
how classical periodic orbits conspire to reproduce quan-
tum eigenfunctions.

Arithmetic groups are a specific subclass of discrete
groups. We shall not give here the precise mathematical
definitions; they can be found, e.g., in [13,6,14]. One can
say as a crude analogy that arithmetic groups are among
discrete groups as integers among rational numbers. The
simplest and the most investigated example of arithmetic
groups is the modular group (and its subgroups) (see, e.g.,
[15)), which is defined as the group of all 2X2 matrices
where all entries are integers and the determinant is 1.

The peculiarities of quantum problems for arithmetic
groups were stressed in [16], where it was shown that the
arithmetic nature of these groups leads to exponentially
large degeneracies of periodic orbits and to nonuniversal
energy-level statistics, contrary to what was expected for
ergodic systems [17].

Here we shall explore another property of such sys-
tems, namely, the existence of infinitely many operators
commuting with the quantum Hamiltonian (and with
themselves) (see also [18]). These operators are called
Hecke operators and are of a purely arithmetical origin
[14,15].

For simplicity we consider (as is usual in this subject)
the case of the modular group, although most formulas
could be generalized for other arithmetic groups [14].

Let us consider the set of 2X2 matrices, with integer
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entries as for the modular domain, but with the deter-
minant being a certain integer p (p51, p7#0):

= |
(1

Their importance comes from the (easily checked) fact
that different matrices of the modular group could be
conjugated by these matrices, even though they do not
form a group, not being stable by multiplication.

An arbitrary matrix G of this form can be uniquely
represented by the product [14,15]

G=ga,, ()
where g belongs to the modular group and «
the following fixed matrices:

a b
0 d

a

c dl a,b,c,d are integers, ad —bc =p

» is one of

, a,b,d integers, ad =p ,

d>0, 0=b=<d—1. (3)

Let 1(x,y) be an automorphic function of the modular
group [15]; i.e., it will obey ¥(g(z))=1(z) for all matrices
g from the modular group.

It is easy to see [15] that the function

az +b

$(z2)=(T,¥)z , 4)

]/2 21!)

where the summation is done over all a,b,d, as in Eq. (3),
will also be an automorphic function for the modular
group. This is a kind of symmetrization of ¥(z) over the
images of z by the elements of M,.

The operators T, defined in (4) are called Hecke opera-
tors. They form a commutative algebra and commute
also with the Laplace-Beltrami operator [14,15]. There-
fore, if there is no degeneracy of the eigenvalues of the
Laplace-Beltrami operator, one has

T, 0, (x,9)=c,(n),(x,y) , (5)

i.e., an eigenfunction of the Laplace-Beltrami operator
will be simultaneously an eigenfunction for all the Hecke
operators.

Any eigenfunction of the Laplace-Beltrami operator
for the modular group corresponding to the discrete spec-
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Here h(r) is any analytic function
Imr| <1+8, such that h(—r)
<Alt+|r]]727% 4>0,6>0.
glu)= 1/27T)f+°°h (r)e ~i"dr is the Fourier trans-
form of A(r). The summation on the right-hand side
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trum can be written as the following Fourier decomposi-
tion (see, e.g., [15]):

U, (6, 0)=y'"? 3 ¢, (n)K, 1 p(2mpy)e*TF* 6)
p=1
where s is connected with a Laplace-Beltrami eigenvalue
A by the relation A=s(s —1) and K, (x) is the Hankel
function.

Using the properties of the Hecke operators, one can
show [15] (assuming nondegeneracies of the eigenvalues
of the Laplace-Beltrami operator) that c,(n) in Eq. (5)
coincide with ¢,(n) in Eq. (6), i.e., the eigenvalues of the
pth Hecke operator are connected with the pth Fourier
coefficients of the expansions of the eigenfunctions of the
Laplace-Beltrami operator. This property is of particular
importance because then the knowledge of the eigenval-
ues of all Hecke operators permits us to reconstruct wave
functions.

To compute the trace formula for Hecke operators one
has to consider the following sum:

S k(z,G2)dulz) , %)
FGEM

where the kernel k (z,z') depends only on the hyperbolic
distance between z and z’, and F is the fundamental
domain of the modular group. Then one regroups terms
into conjugacy classes with respect to the group SL(2,Z).
In [19] this trace formula was presented for p prime, and
p >0. We found that for numerical computations it is
more convenient to use a different trace formula corre-
sponding to the Hecke operator applied to the Dirichlet
kernel on a billiard defined in half the modular domain.
More precisely, instead of applying T, to k (z,z") as in (7),
one applies +(7, —7_,); as shown in [20] this gives a
trace formula for a billiard with Dirichlet boundary con-
ditions on half the modular domain (which is called the
Artin billiard [11]). The group I' with respect to which
we compute the conjugacy classes is the full billiard
modular group (BMG), i.e., the set of all 2X2 matrices
with integer entries and determinant *1.

Though all ideas are not new [6,20] the computation is
quite tedious and this formula to our knowledge has not
been published before. We present here the final result of
this computation; details will be published elsewhere [21]:

l“P

)

InX(p +1)
p+1

= ]_1nX(p—1)+
+1 —1

(rhs) is taken over all eigenvalues of the Laplace-Beltrami
operator A, =1 +r2, and the c,(n) are the eigenvalues of
the T, Hecke operator. (We stress that there exists a
trace formula for each p.) X (n)=TIx moan(k>1), (k,n) be-

ing the greatest common divisor of k and n.
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The first term corresponds to the matrices in M, whose
trace is greater than 2V/p and that does not belong to a
conjugacy class of some a,; equivalently, those are ma-
trices whose traces are greater than 2V'p p but not equal to
(p+1).

The corresponding term in the usual trace formula in-
volves hyperbolic conjugacy classes, which are in one-to-
one correspondence with the periodic orbits of the sys-
tem. Here we do the same, taking a representative G for
each conjugacy class with respect to the BMG in M,,.
We can associate a length L, with G, as with every hy-
perbolic fractional transformation, by

-8

Vp
Then one computes the commutant of it; i.e., matrices g
of the full BMG which commute with G: Gg =gG. This
set is, as previously, generated by a single element of the
BMG whose associated periodic orbit has a length /,.
The forit:ula for hyperbolic classes looks the same as in
the usual case, but in the usual case L, =nl,, n being an
integer, whereas here there is no simple relation between
them. In fact, our results show that in some cases lp can
be enormously greater than L, In other words, G as a
transformation maps one point on the periodic orbit of
length /, into another point on the same periodic orbit,
which is not connected in a simple way to the starting
point. We can say that those L, of hyperbolic classes of
M, are the hyperbolic distances between a point and its
image.

The second term gives the same as above for —p; the
matrices of M _, have a negative determinant and corre-
spond to odd boosts. Here, as above, L~p is the length
associated to a hyperbolic class in M _, with respect to
the BMG:

L,
2 cosh——= 9)

2

G
Tr \/;

. L—p
2 sinh = ; (10)

the trace of the matrices in M _, should be different from
(p —1). 1_, is the length of the generator of the commu-
tant in the BMG and corresponds to the length of a
periodic orbit of the billiard.

The contribution of matrices of M _ p With trace equal
to zero have an additional factor 1 due to the existence of
a commuting element whose square is the identity.

The third term corresponds to the conjugacy classes of
elliptic matrices G in M,, ie., whose trace is less than

2V'p (there are no such classes in M _ p); then we can
write Tr(G)=2Vp cosf with 0< 60 <. “The only possi-
ble matrices of the billiard modular group commuting
with those matrices are elliptic matrices corresponding to
a primitive rotation of angle 27 /m. It is this integer m
that enters Eq. (8) (m =1 corresponds to the identity ma-
trix).

The last two terms are connected with the existence of
the infinite cusp, which usually leads to difficulties in
deriving trace formulas for the modular group [6,19,20].
They correspond to the conjugacy classes of the matrices
a, and a_, of Eq. (3). The commutant of those matrices
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is trivial, being merely the identity matrix. We note that
two different @, can belong to the same BMG conjugacy
class.

We can interpret this formula as the usual trace formu-
la applied to a system with symmetry by seeing which
periodic orbits of the BMG will appear in Eq. (8). The
only ones that will be selected will be those whose corre-
sponding matrix T commutes with one matrix G of M,
(or M _,). From Eq. (2) one knows that G can be written
G =ga,, g being in SL(2,Z) and a, having the form (3).
It is easy to show that if T commute with ga,, then
g 'Tg= =a,Ta,

This means that a,Ta, " is a matrix of the BMG be-
longing to the same con]ugacy class as T; then a,Ta,
corresponds to a periodic orbit of the Artin billiard and
this periodic orbit is the one given by 7. So the periodic
orbits of the Artin billiard that are selected are those that
are invariant by the action of a,. For example, T_, acts
as the symmetry with respect to the axis x =0, and the
corresponding trace formula for (T, —T_,) gives the
usual trace formula for the Dirichlet problem on the Ar-
tin billiard [20].

We have computed the rhs of Eq. (8) for a few values of
p. We chose as the function A (r) a Gaussian function
h(r)=exp[— A4 (r —rq)*]+exp[ — 4 (r +ry)?], for which
the rhs of the trace formula (8), considered as the func-
tion of k;, should have peaks at true eigenvalues, the am-
plitudes of which are equal to the Fourier coefficients of
the expansion (6). For each value of the trace of M, we
computed the representatives of conjugacy classes of M,
with respect to BMG by using a generalization of the
well-known Gauss method of reduction of quadratic
forms, and then from the knowledge of the intermediate
steps of this procedure we computed the matrix of the
BMG of minimal length that commute with it; this ma-
trix is the generator of the commutant. We have found
for some of the M, matrices an unexpectedly large length
for the commuting matrices. For example, the matrix
with entries 295, 274; 267, 248 has a determinant equal to
2 and the matrix of the BMG of minimal trace that com-
mutes with it has integer entries on the order of 10%"!.
The details of the method used will be given elsewhere
[21].

The hyperbolic terms give the main contribution to the
formula (8). The elliptic ones are exponentially small at
the energies of computation, and the ‘“cusp” terms give
more or less a smooth slowly oscillating function of
period 27 /Inp with small amplitude.

We have computed the sum on the rhs of Eq. (8), using
approximately 15000 periodic orbits, and have compared
it with the results of direct computations of the Fourier
coefficients and eigenvalues for this problem. As an ex-
ample we presented in Figs. 1 and 2 the results of the
computations for p =3, 4 =30 and for p =5, 4 =28.
The classical and quantum computations seem almost in-
distinguishable at the scale used. The results for other
values of p are of the same quality. For the first eigenval-
ues our computations are in perfect agreement with the
results of Hejhal [22]. So this method seems to be
efficient for exploring the eigenfunctions of arithmetical
systems; it does not use a lot of computer time to get the
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FIG. 1. The Hecke operator’s trace formula for p =3; the
dashed curve is our result with 15000 periodic orbits, the con-
tinued one is the quantum calculation.

results we show.

We have also studied the number of conjugacy classes
in M, with respect to their length L, for different p. It
was found that this number grows more slowly than in
usual hyperbolic systems; for these ones, Huber’s law [23]
states that the number of periodic orbits of length less
than L is N(I <L)~expL /L. Our computation gives a
dependence like

InN(L,<L)~3L . (1n

The coefficient 2 is a numerical one and we cannot ex-
clude a slow dependence of this factor on p.

In conclusion we emphasize the following points.

® The existence of an infinite number of commuting
Hecke operators is the characteristic property of models

FIG. 2. The same as Fig. 1 but for p =5.

generated by arithmetic groups.

® For each value of p there exists a subset of periodic
orbits of the modular domain, each of which remains in-
variant under one of transformations (3). The number of
these orbits grows approximately as in (11).

@ It is these invariant periodic orbits that give the con-
tributions to the trace formulas for Hecke operators. The
latter are a new kind of trace formula that permits us to
reconstruct quantum wave functions of arithmetical sys-
tems directly from classical periodic orbits.

® The Hecke-type trace formula for Artin’s billiard
was derived and checked numerically; a good agreement
between quantum and classical calculations was found.
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